skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Jiahan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 21, 2026
  2. Polar van der Waals (vdW) crystals, composed of atomic layers held together by vdW forces, can host phonon polaritons—quasiparticles arising from the interaction between photons in free-space light and lattice vibrations in polar materials. These crystals offer advantages such as easy fabrication, low Ohmic loss, and optical confinement. Recently, hexagonal boron nitride (hBN), known for having hyperbolicity in the mid-infrared range, has been used to explore multiple modes with high optical confinement. This opens possibilities for practical polaritonic nanodevices with subdiffractional resolution. However, polariton waves still face exposure to the surrounding environment, leading to significant energy losses. In this work, we propose a simple approach to inducing a hyperbolic phonon polariton (HPhP) waveguide in hBN by incorporating a low dielectric medium, ZrS2. The low dielectric medium serves a dual purpose—it acts as a pathway for polariton propagation, while inducing high optical confinement. We establish the criteria for the HPhP waveguide in vdW heterostructures with various thicknesses of ZrS2 through scattering-type scanning near-field optical microscopy (s-SNOM) and by conducting numerical electromagnetic simulations. Our work presents a feasible and straightforward method for developing practical nanophotonic devices with low optical loss and high confinement, with potential applications such as energy transfer, nano-optical integrated circuits, light trapping, etc. 
    more » « less
  3. Phonons are important lattice vibrations that affect the thermal, electronic, and optical properties of materials. In this work, we studied infrared phonon resonance in a prototype van der Waals (vdW) material—hexagonal boron nitride (hBN)—with the thickness ranging from monolayers to bulk, especially on ultra-thin crystals with atomic layers smaller than 20. Our combined experimental and modeling results show a systematic increase in the intensity of in-plane phonon resonance at the increasing number of layers in hBN, with a sensitivity down to one atomic layer. While the thickness-dependence of the phonon resonance reveals the antenna nature of our nanoscope, the linear thickness-scaling of the phonon polariton wavelength indicates the preservation of electromagnetic hyperbolicity in ultra-thin hBN layers. Our conclusions should be generic for fundamental resonances in vdW materials and heterostructures where the number of constituent layers can be conveniently controlled. The thickness-dependent phonon resonance and phonon polaritons revealed in our work also suggest vdW engineering opportunities for desired thermal and nanophotonic functionalities. 
    more » « less
  4. Abstract Polaritons—confined light–matter waves—in van der Waals (vdW) materials are a research frontier in light–matter interactions with demonstrated advances in nanophotonics. Reflection, as a fundamental phenomenon involving waves, is particularly important for vdW polaritons, predominantly because it enables the investigation of polariton standing waves using the scanning probe technique. While previous works demonstrate a rigid phase ≈π/4 for the polariton reflection, herein is reported the altering of the polariton reflection phase by varying the geometry of polaritonic microstructures for the case study of hyperbolic surface polaritons (HSPs) in hexagonal boron nitride (hBN). Specifically, it is demonstrated that the polariton reflection phase can be systematically altered by varying the corner angle of the hBN microstructures, and that it experiences a π jump around a specific angle. This behavior, which is a consequence of the mathematical nature of the reflection coefficient, is therefore expected in other physical phenomena. 
    more » « less
  5. Abstract Probing of polaritons in 2D materials is facilitated by spectroscopic imaging with nanometer spatial resolution. The combination of atomic force microscopy and infrared laser sources provides access for in situ mappings of phonon polaritons. Here, it is demonstrated that the photothermal‐based peak force infrared microscopy is capable of revealing phonon polaritons with high spatial resolution in isotopically pure hexagonal boron nitride microstructures without damaging the sample. To further improve the sensitivity, peak force infrared microscopy is enhanced with a scheme of multiple laser pulse excitation. The resulting method of multipulse peak force infrared microscopy can detect phonon polaritons with high sensitivity, which is particularly useful for probing polaritons in 2D materials with high damping characteristics. 
    more » « less